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ABSTRACT

Butane costs 25% to 30% less than most other high-octane blend components used to produce
gasoline in oil refineries. Being able to add more butane into summer gasoline blends while the
blends remain below the highly regulated Reid vapor pressure (RVP) caps, which change
seasonally, can greatly improve profitability. Unlike many other forms of spectroscopy, Raman
scattering has repeatedly demonstrated excellent accuracy in predicting gasoline volatility over a
wide range of RVP (i.e., 4.6 psi to 18.4 psi), using a single chemometric model. Breaking up a
full-range RVP model into multiple sub-models with smaller ranges that match seasonal motor
gasoline (Mogas) blends can greatly improve the online RVP standard error of prediction (SEP).
Applying this hierarchical modeling approach to online Raman RVP measurements has allowed
one Chevron oil refinery in Richmond, California, to target an RVP SEP of 0.1 pounds per square
inch (psi) for its summer blends. This reduction in RVP giveaway yielded substantial annual
savings.



INTRODUCTION

Profitable gasoline production has always been a challenge for oil refineries because of numerous
government regulations. A particularly difficult challenge is blending summer (June 1 through
September 15) Mogas, which must maintain a sufficient high-octane rating to ensure that motor
vehicles run efficiently, while keeping the RVP property, a measurement of volatility, beneath
mandatory limits. The Clean Air Act requires the Environmental Protection Agency (EPA) to
regulate summer gasoline blends to be lower in volatility in order to reduce evaporative emissions
(1), which generally increase during warm weather and can cause unhealthy levels of ground-level
ozone.

Refineries can often blend alkylate (2), a high-octane blend component with an inherently low
vapor pressure, into their summer blends to meet these requirements. However, alkylate is one of
the most expensive blend components, and some refineries do not have access to an alkylate
stream. A more readily available, significantly less expensive solution for blending summer
gasoline is to add in butane, which is approximately 30% less expensive than other blend
components. Butane offers a high-octane rating but has a high vapor pressure, so it can be added
only in small quantities to ensure the blend will not exceed the permissible RVP cap.

Online Raman (3) spectroscopy combined with hierarchical chemometric models is an accurate,
continuous, online RVP measurement technique that allows a refinery to efficiently blend greater
amounts of inexpensive butane into summer gasoline blends, reducing RVP giveaway while
maintaining low RVP and high-octane requirements.

METHODS

Vibrational spectroscopy involves the interaction of infrared radiation (IR) with matter. Raman
scattering is a form of vibrational spectroscopy in which a change in the polarizability of a
molecule with respect to a change in the normal coordinate of the vibration causes incident light
to be scattered with a frequency shift that corresponds to the energy of the vibration. After this
interaction, the scattered photons are shifted to either lower energy (Stokes) or higher energy (anti-
Stokes), resulting in a unique "fingerprint" that can be observed in the Raman spectrum of the
molecule (Figure 1). The Raman process is a light-scattering effect and has different selection rules
than IR absorption.

Both Raman and mid-IR measure fundamental vibrational modes. The selection rules are different,
so modes that are strong in Raman tend to be weak in mid-IR and vice versa. Because Raman
scattering spectra are excited in the near-IR wavelength region (~ 785 nanometers [nm] to 800 nm)
with laser excitation, Stokes Raman signal collection can be easily performed using conventional
multimode fiber-optic cables. This allows for remote sampling from up to ~ 300 meters (1,000
feet) away, whereas with mid-IR/IR, fiber-optic cable lengths of only a few meters must be used.



FIGURE 1.  RAMAN SCATTERING (REFERENCE 4)

The Raman effect is rather weak but offers excellent spectral resolution and minimum overlap of
components, resulting in maximum component specificity.

Raman scattering spectra are relatively easy to interpret. Peak frequency shift yields sample
composition, and peak intensity yields concentration of components. Like all spectrographic
methods, Raman scattering requires the collection of laboratory data using American Society for
Testing and Materials (ASTM) laboratory methods and the building of chemometric models.

Unlike conventional near-IR spectroscopy, Raman scattering shows a unique and strong peak for
butane at ~ 799 wavenumber shift (Figures 2 and 3). This peak is discrete and does not overlap
with the many peaks from other gasoline components. Consequently, Raman scattering used in
conjunction with conventional chemometric techniques can easily be used to measure RVP.



FIGURE 2.  RAW GASOLINE RAMAN SPECTRUM
NOTE BUTANE RAMAN PEAK AT ~ 799 WAVENUMBER SHIFT



FIGURE 3.  NEAT BUTANE RAMAN PEAK (LOWER CURVE) AND BUTANE AS
OBSERVED IN HIGH- AND LOW-VAPOR-PRESSURE GASOLINE

EQUIPMENT

Raman spectra were collected using an online analyzer from Process Instruments, Inc. (model PI-
200-I-18). An InPhotonics Raman probe (model RPS 785/24/5) was configured in a flow-through
sample cell (model PI-EN-S-2-2-A) that was plumbed into a speed loop. The sample flow rate was
~ 2 to 4 liters/hour. No sample conditioning was required. Laser excitation was at a wavelength of
785 nm, and power at the probe tip was ~ 250 milliwatts (mW). Spectrum collection time was ~ 3
minutes.

Online Raman spectra and ASTM laboratory data for ~2,200 data points were collected from a
finished gasoline blend-header over a period of four years, ensuring that blends from many
different crude slates, all seasonal variances, and a wide range of refinery conditions were
represented in the data set.

The chemometric modeling software used was Solo version 8.1 (Eigenvector Research). Partial
least squares (PLS) regression models were built using the steps below:



1. Background correction, area normalization of all spectra, and mean centering
2. Venetian blind cross-validation
3. Generalized least squares weighting (GLSW)
4. Outliers selected from leverage vs. studentized residuals
5. Conservative choice of latent variables determined from standard error of cross-

validation (SECV) plot
6. Validation with an independent set of data

The training set included spectra from grab samples captured with a laboratory Raman
spectrograph and online spectra captured with a separate online Raman unit. Laboratory grab
samples usually have different RVP and octane profiles than online samples because of light-end
losses during the grab sample collection process. Butane has a very high vapor pressure and a high-
octane rating, and so is easily lost during the collection process. Thus, the RVP and octane values
of a grab sample are often lower compared to their respective online samples. Because of these
differences, online and laboratory Raman spectra were both included in the chemometric models.

Historically, grab sample collection times are often not accurately recorded, which makes it
difficult to properly correlate grab sample collection times with their online spectra and
predictions. For this reason, a flow sensor is always included on the grab sample collection circuit
and connected to the online Raman system. When grab samples were collected, the event was
time-stamped, and the respective online Raman spectrum was saved in a unique folder for use in
model building.

Solo was chosen as the software for making chemometric models because it includes the GLSW
technique. When compared with other commercial modeling packages, Solo models tend to have
fewer latent variables (factors), the models tend to have lower SEPs, improved model robustness,
and better model transference.

RESULTS AND DISCUSSION

A full-range PLS model was built using a training set of 1,909 spectra, with 212 spectra reserved
for an independent validation set. Twenty-one spectra were removed from the training set as
outliers in preparing the model, and two spectra were removed from the validation set to obtain
the results shown in Figure 4.



FIGURE 4.  FULL-RANGE RVP MEASURED VS. PREDICTED

With five latent variables, the model provided an SEP of 0.19 psi, comparing well with the ASTM
repeatability (r) of 0.2 psi. The other parameter values (Figure 4) indicate that the full-range model
is quite accurate.

Sub-models with better SEPs than the full-range model can be obtained by dividing the RVP data
into smaller ranges. The scores plot for the full-range model (Figure 5) can be used to define the
ranges for the sub-models based on the clusters of samples in the plot.

FIGURE 5.  FULL-RANGE RVP SCORES LV1 VS. LV2



Alternatively, the ranges for the sub-models can be determined from the known ranges of the
summer (6.0 < RVP < 7.5 psi), transition (9.3 < RVP < 11.6 psi), and winter (12.5 < RVP < 16.9
psi) blends. Sub-models were made based on the known ranges, with the results illustrated in
Figures 6–8. Compared to the SEP (0.19) of the full-range model, the SEP (0.08) of the summer
model improved the most, but the SEP of the other seasonal sub-models (0.19 for transition-season
blends and 0.16 for winter blends) also improved.

FIGURE 6.  LOW-RANGE RVP MEASURED VS. PREDICTED



FIGURE 7.  MID-RANGE RVP MEASURED VS. PREDICTED

FIGURE 8.  HIGH-RANGE RVP MEASURED VS. PREDICTED

The RVP models were also tested with new data obtained in the months after the models were
prepared. The validation results for the new data are shown in the table below:



TABLE I.  VALIDATION RESULTS FOR THE NEW DATA

Although the number of new validation samples limits the statistics, the models appear to work
well with future data. The SEP with the summer model (0.07) is even better than the SEP for the
original validation set (0.08). These results are consistent with the goal of not only building reliable
models, but also building models that are robust enough to increase the time between model
updates.

The Solo software uses a hierarchical modeling tool that allows the appropriate seasonal target
model to be automatically selected for a final RVP prediction that is based on the RVP prediction
for a sample from the full-range model acting as a trigger. Although each model must be created,
the models can be combined in a single hierarchical model that operates automatically according
to the logic shown in Figure 9.

FIGURE 9.  HIERARCHICAL MODELING LEVELS

The Chevron refinery applied these smaller-range models to its gasoline blending and documented
RVP giveaway savings of $6 million from twelve months spanning 2014 through 2015 by targeting



0.1 psi from specifications (5). The refinery was able to blend consistently to < 0.1 psi in summer
grades. This means the refinery was able to blend significantly more butane into its fuels,
especially during the critical summer season. A similar approach to its octane modeling resulted
in additional savings.

CONCLUSIONS

Raman scattering has repeatedly demonstrated excellent accuracy for predicting RVP values over
a wide range (i.e., 4.6 to 18.4 psi), using a single chemometric model. It is shown that breaking up
a full-range RVP model into multiple, smaller-range sub-models that match seasonal blends can
greatly improve online RVP SEPs. Applying this hierarchical modeling approach to online Raman
RVP measurements has allowed the Chevron refinery in Richmond, California, to achieve an RVP
SEP of 0.1 psi for its summer blends (SEP x 2 = ASTM “R,” where “R” = reproducibility). This
reduction in RVP giveaway yielded an annual savings of $6 million by allowing the refinery to
blend in greater amounts of butane, which costs considerably less than other blend components.

Breaking down chemometric models into sub-models with smaller ranges, by season or perhaps
blend type, can greatly improve model SEP. This modeling scheme can be applied using many
commercial chemometric packages. However, not all chemometric packages include the
hierarchical model feature that automatically switches models on the fly, according to the range of
the predicted parameter.

Using this modeling technique for RVP and octane models, and from close observations,
hierarchical models can be applied to many other fuel parameters, especially those where
additional accuracy is desired, such as for distillation points. Hierarchical models may not be
beneficial for all parameters, so it is recommended that appropriate scores plots be examined for
specific situations to determine whether building multiple, smaller-range models is warranted.
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